Energy Outlook: A View to 2040

Nazeer Bhore

Detroit Automotive Petroleum Forum Detroit, MI

April 16, 2014

This presentation includes forward-looking statements. Actual future conditions (including economic conditions, energy demand, and energy supply) could differ materially due to changes in technology, the development of new supply sources, political events, demographic changes, and other factors discussed herein and under the heading "Factors Affecting Future Results" in the Investors section of our website at: www.exxonmobil.com. The information provided includes ExxonMobil's internal estimates and forecasts based upon internal data and analyses as well as publically-available information from external sources including the International Energy Agency. This material is not to be used or reproduced without the permission of Exxon Mobil Corporation. All rights reserved.

countries

100

Technology & Policy

Global Progress Drives Demand

Electricity Generation Leads Growth

Energy Demand by Sector

E‰onMobil

Industrial Energy Demand

By Sector

Percent Share

Industrial Energy Demand

By Fuel

Percent Share

Transportation

Transportation Demand

Sector Demand MBDOE

Commercial Transportation by Region - 2010 MBDOE

Transportation Demand

Sector Demand

Commercial Transportation by Region - 2040 MBDOE

Technologies for Light Duty Transport

technologies for fuel production

shorter-term

- energy efficiency
- flare reduction
- cogeneration

longer-term

- second generation bio-fuels
- Carbon Capture and Storage (CCS)

technologies for consumers' use of fuel

shorter-term

- conventional vehicle technology improvements
 - engines (e.g. adv. lubricants); efficient transmissions
 - others (e.g. tire liners, low weight plastics)
- advanced vehicles
 - hybrid (e.g. lithium ion battery materials)
 - advanced diesel
 - CNG

longer-term

- breakthrough vehicles
 - "HCCI" or "CAI"; fuel cell (e.g. on-board H₂ generator)
 - plug-in hybrid and EV (e.g. lithium ion battery materials)

Light Duty Vehicle Efficiency

Car Fleet by Type

Million Cars

Range of Average Vehicle Efficiency

On-Road Miles per Gallon

Transportation Fuel Mix by Region

ExonMobil

Natural Gas Into Transportation

Electricity generation

Electricity Demand

Global Electrical Demand by Sector

Thousand TWh

Global Electrical Demand by Fuel

Thousand TWh

E‰onMobil

Electricity Use by Region

Asia Pacific

4

ExxonMobil 2014 Outlook for Energy

2

0

0

ExonMobil

10

Rest of World

8

6

Population (Billions)

Economic Choices for U.S. Electricity

CCS Use for Power Generation

Least Cost Generation Technology Zones

Source: Society of Petroleum Engineering, SPE-139716-PA

Emissions

CO₂ Emissions Plateau

Emissions per Capita

Tonnes / Person

Energy Mix Continues to Evolve

Quadrillion BTUs

Liquids Supply

Liquid Supply by Type MBDOE

Crude and Condensate Resource*

Trillion barrels of oil

Gas Resources Abundant; Supply Diversifies

LNG Demand Triples and LNG Supply Diversifies

Liquids Trade

Natural Gas Trade

Technology Evolution Summary

- Technology development requires longer-term focus and is unpredictable
 - Benefits from a portfolio approach; Learning from failure advises future projects
 - May require business model innovation, especially in "new-to-world" applications
 - Sometimes driven by science and technology developments in other unrelated areas
 - Extent, pace, and source of future cost reduction cannot be precisely predicted
 - Unconventional gas current low costs were not expected a few years ago
 - Batteries 5x energy density increase in two centuries another 15x increase = gasoline
- Technologies are likely commercialized in higher value segments before they are used in lower value segments
 - Lithium ion batteries cell phones > power tools > hybrids > electric vehicles
 - CCS NG separation/EOR > Power plants/storage > Refineries/storage
 - Butanol: Bio-n-butanol displaces chemical n-butanol > fuel additive > neat fuel
- Technology evolution typically crosses national boundaries but government funding is frequently driven by desire to create national competitive advantage, E.g. Li-ion battery
 - Lithium ion batteries concept, Whittingham, Exxon Corporate Lab, NJ in 1970s
 - Anode Yazimi France/ Cathode Goodenough Texas, USA in 1980s
 - Separator Film, Tonen in Japan in 1980s, former Exxon and Mobil Affiliate
 - Li-ion use in consumer devices, cell phone use, Sony in Japan in 1990s
- Global widespread technology adoption is driven by long-term economic fundamentals
- Market driven selection of the solutions will ensure longer-term viability

Conclusions

